现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年不断有人涌入,也有人并不看好。
对于想转行,尤其是30岁以后想转行数据分析岗的伙伴而言,了解行业的发展趋势、掌握行业入门技能非常有必要。
数据分析需要掌握的技能和知识点不少,但如果非要选择一个技能,我认为是数据可视化能力。
数据可视化旨在借助于图形化手段,清晰有效地传达与沟通信息。它包括图表、图形、信息图、动画和其他有助于简化数据的元素。其目的在于以一种易于理解并吸引受众的方式呈现复杂的数据,让用户更容易识别数据中的模式、趋势、异常值,从而更好的分析数据。
1、数据可视化的优势
相比于冗长的文字描述,可视化的数据图表能让各类信息一目了然地呈现出来。数据可视化图表在增强信息传达效率,帮助我们在瞬间抓住受众的注意力方面功不可没。
首先,能突出变化发展趋势。例如,在展示年度销售数据时,一个简洁的柱状图可以清晰地对比各季度销售额的高低,让观众一眼就能看出销售趋势,而无需花费时间去解读繁琐的表格数据。
其次,能精准突出关键信息。通过精心设计的图表,能非常好地突出关键信息。如折线图展示时间序列数据的变化趋势、饼图呈现各部分占总体的比例关系等,能够将数据中的关键信息和潜在规律直观地呈现出来。这有助于决策者快速聚焦重点,发现问题或机会。
再次,能提高分析表达效率。提升数据的可理解性对于非专业人士或数据素养较低的受众,复杂的数据表格可能晦涩难懂。而图表可视化模板以图形化的方式呈现数据,使信息更易于理解和消化,降低了数据理解的门槛,促进了信息的广泛传播与共享。
2、做好数据可视化基本步骤
如何将复杂的数据变得更直观,帮助用户从海量信息中提取出关键信息?这是数据分析最基本的要求,而数据可视化能很好地解决这个问题。
1.明确目标和受众群体
深入了解受众是谁,他们的知识水平、技术专长以及期望和目标。基于这些信息,采用适当的格式和设计来呈现数据。
2.保持可视化的简单性
设计数据可视化时,简单性至关重要,整体信息应该非常清晰,没有任何混乱。
删除对受众没有意义的信息。在数据如此丰富的时代,我们必须对展示的内容进行筛选。任何不能强化数据观点的内容都应该从可视化中删除。
减少不必要的设计元素。不需要添加额外的设计元素(如3D元素)来丰富可视化,虽然它看起来很高端,但并不直观易懂。
保持风格的统一性。实施醒目且一致的配色方案、清晰且大小合适的字体,同时利用空白、网格和边距来组织页面布局。大标题、图例和标签也有助于更清楚地解释内容。
3.选择正确的图表类型
不同的数据适合不同的图表类型。例如,折线图是显示趋势的首选,散点图用于揭示关系和相关性,而饼图或圆环图则常用于显示百分比。
根据数据的特性选择合适的图表类型,能够更好地突出数据的重点。
柱状图:适合比较不同类别的数据。
折线图:适合展示时间序列数据的变化趋势。
散点图:用于展示两个变量之间的关系。
热力图:适合展示数据的密度或集中程度。
仪表盘:综合展示多个关键指标,便于快速了解整体情况。
4.使用文本和标签强化信息
文本在数据可视化中起着重要的补充作用。它包括标签、简短说明段落、标题、图例等形式。但是要注意,无论何时,文本都应服务于提升数据解读的清晰度,而不是分散对数据本身的注意力。
5.引入新一代数据可视化工具
除自己创建数据可视化外,我们还可以考虑引入新一代数据可视化分析工具,它不仅提供了可视化,还集成了数据分析功能,可以有效帮助用户更深入的进行数据探索和洞察。
数据可视化操作步骤并不复杂,难的是如何从海量数据中选取你想要的信息,其关键还在于数据思维的培养。