核心内容介绍
对数据管理专业人士也可用作业务参考。
全书共17章。分别是:
数据治理(Data Governance):通过建立一个能够满足企业需求的数据决策体系,为数据管理提供指导和监督。这些权限和责任的建立应该考虑到组织的整体需求。(参见第3章)
数据架构(Data Architecture):定义了与组织战略协调的管理数据资产的“蓝图”,指导基于组织的战略目标,指定符合战略需求的数据架构。(参见第4章)
数据建模和设计(Data Modeling and Design):以数据模型(data model.)的精确形式,进行发现、分析、展示和沟通数据需求的过程。(参见第5章)
数据存储和操作(Data Storage and Operations):以数据价值最大化为目标,包括存储数据的设计、实现和支持活动,以及在整个数据生命周期中,从计划到销毁的各种操作活动。(参见第6章)
数据安全(Data Security):这一活动确保数据隐私和安全,数据的获得和使用必须要有安全的保障。(参见第7章)
数据集成和互操作(Data Integration and Interoperability):包括与数据存储、应用程序和组织之间的数据移动和整合相关的过程。(参见第8章)
文档和内容管理(Document and Content Management):用于管理非结构化媒体的数据和信息的生命周期过程,包括计划、实施和控制活动,尤其是指支持法律法规遵从性要求所需的文档。(参见第9章)
参考数据和主数据管理(Reference and Master Data Management):包括核心共享数据的持续协调和维护,使关键业务实体的真实信息,以准确、及时和相关联的方式在各系统间得到一致使用。(参见第10章)
数据仓库和商务智能(Data Warehousing and Business Intelligence):包括计划、实施和控制流程,来管理决策支持数据,并使知识工作者通过分析报告从数据中获得价值。(参见第11章)
元数据管理(Metadata Management):包括规划、实施和控制活动,以便能够访问高质量的集成元数据,包括定义、模型、数据流和其他至关重要的信息(对理解数据及其创建、维护和访问系统有帮助)。(参见第12章)
数据质量管理(Data Quality Management):包括规划和实施质量管理技术,以测量、评估和提高数据在组织内的适用性。(参见第13章)
除了有关知识领域的章节外DAMA-DMBOK,车轮图以外的内容,包含以下主题章节:
数据处理伦理(Data Handling Ethics):描述了关于数据及其应用过程中,数据伦理规范在促进信息透明、社会责任决策中的核心作用。数据采集、分析和使用过程中的伦理意识对所有数据管理专业人士有指导作用。(参见第2章)
大数据和数据科学(Big Data and Data Science):描述了针对大型的、多样化数据集收集和分析能力的提高而出现的技术和业务流程。(参见第14章)
数据管理成熟度评估(Data Management Maturity Assessment):概述了评估和改进组织数据管理能力的方法。(参见第15章)
数据管理组织和角色期望(Data Management Organization and Role Expectations):为组建数据管理团队、实现成功的数据管理活动提供了实践提供和参考因素。(第16章)
数据管理和组织变革管理(Data Management and Organizational Change Management ):描述了如何计划和成功地推动企业文化变革,文化的变革是将数据管理实践有效地嵌入组织中必然结果。(第17章)
想要了解更多教材内容及系统课程信息可以添加课程老师微信了解:金老师18513851518(微信同步)