在大数据时代,我们的日常生活,尤其是企业的日常运作,都离不开大数据,可以毫不夸张地说,大数据将伴随着企业从最初的建立,到发展长到的全过程,不管是产品的生产还是销售,都将越来越注重对大数据的依赖。如何获得游泳的核心数据,并管理和使用好这些大数据,也几个成为影响企业成败的关键。
在国内,目前的阿里巴巴、百度和腾讯成为三足鼎立之势,这三家公司不仅是国内IT业绩的三巨头,也是最具实力的大数据提供方。亨氏如此,他们呢才会在激烈的市场竞争中不断发展壮大。
知己知彼,百战不殆。在现代企业的运营发展中同样如此,谁拥有了更多更有价值的信息,谁就将掌握是常规的主动权。
作为大数据使用的先驱,IBM正式推出InfoSphere大数据分析平台。InfoSphere大数据分析平台包括 BigInsights和Streams,二者互补,Biglnsights基于Hadoop,对大规模的静态数据进行分析,它提供多节点的分布式计算,可以随时增加节点,提升数据处理能力。Streams采用内存计算方式分析实时数据。InfoSphere大数据分析平台还集成了数据仓库、数据库、数据集成、业务流程管理等组件。
另一家IT也巨头,亚马逊公司同样不甘人后,对于云计算和大数据,亚马逊绝对具有先见之明,早在2009年就推出了亚马逊弹性MapReduce(Amazon Elastic MapReduce),亚马逊对Hadoop的需求和应用可谓了若指掌,无论是中小型企业还是大型组织。弹性MapReduce是一项能够迅速扩展的Web服务,运行在亚马逊弹性计算云(Amazon EC2)和亚马逊简单存储服务(Amazon S3)上。这可是货真价实的云:面对数据密集型任务,比如互联网索引、数据挖掘、日志文件分析、机器学习、金融分析、科学模拟和生物信息学研究,用户需要多大容量,立即就能配置到多大容量。
除了数据处理外,用户还可以使用Karmasphere Analyst的基于服务的版本,Karmasphere Analyst是一种可视化工作区,用于在亚马逊弹性MapReduce上分析数据。用户还可以提取结果文件,以便在数据库或者微软Excel或Tableau等工具中使用。
对于甲骨文公司,人们对它最熟悉的产品应该就是Oracle数据库,这也让加顾问龚成为大数据时代,重要的参与者之一。racle数据库,大数据机(Oracle Big Data Appliance)为许多企业提供了一种处理海量非结构化数据的方法。在2011年10月初召开的Oracle OpenWorld 2011大会上甲骨文正式推出了Oracle大数据机。对于那些正在寻求以更高效的方法来采集、组织和分析海量非结构化数据的企业而言,该产品具有很大的吸引力。
与甲骨文近期推出的其他一体化产品一样,Oracle大数据机集成了硬件、存储和软件,包括Apache Hadoop软件的开源代码分发、新的甲骨文NoSQL数据库和用于统计分析的R语言开源代码分发。该产品被设计为能够与甲骨文Database 11g、Oracle Exadata数据库云服务器,以及针对商业智能应用的新的Oracle Exalytics商业智能云服务器一起协同工作
谷歌一直是科技行业的领军者,近年来几乎在任何一项互联网科技项目你都能看到谷歌的身影,大数据时代谷歌自然不会错过。何况如果对其拥有的海量数据进行深入挖掘,这对于提升谷歌搜索乃至所有谷歌服务的价值无可估量。
BigQuery是Google推出的一项Web服务,用来在云端处理大数据。该服务让开发者可以使用Google的架构来运行SQL语句对超级大的数据库进行操作。 BigQuery允许用户上传他们的超大量数据并通过其直接进行交互式分析,从而不必投资建立自己的数据中心。Google曾表示BigQuery引擎可 以快速扫描高达70TB未经压缩处理的数据,并且可马上得到分析结果。大数据在云端模型具备很多优势,BigQuery服务无需组织提供或建立数据仓库。而BigQuery在安全性和数据备份服务也相当完善。
去年底该服务只向一小部分开发者开放,现在任何人都可以注册这项服务。免费账号可以让你每月访问高达100GB的数据,你也可以付费使用额外查询和存储空间。
微软研究部门从2006年起就一直致力于某种非常类似于Hadoop的项目,被称为“Dryad”。今年年初,该计划通过与SQL Server和Windows Azure云的集成实现了Dryad的产品化。虽然现在微软还没有更新,但看上去Dryad似乎将成为在SQL Server平台上影响大数据爱好者的有力竞争者。
微软进入这一市场可谓“姗姗来迟”,而且在一定程度上说,数据仓库分析和内存分析计算市场落下了后腿。2011年初微软发布的SQL Server R2 Parallel Data Warehouse(PDW,并行数据仓库),PDW使用了大规模并行处理来支持高扩展性,它可以帮助客户扩展部署数百TB级别数据的分析解决方案。微软目前已经开始提供Hadoop Connector for SQL Server Parallel Data Warehouse和Hadoop Connector for SQL Server社区技术预览版本的连接器。 该连接器是双向的,你可以在Hadoop和微软数据库服务器之间向前或者向后迁移数据。
微软在去年推出了基于Azure云平台的测试版Hadoop服务,今年它承诺会推出与Windows兼容的基于Hadoop的大数据解决方案(Big Data Solution),这是微软SQL Server 2012版本(首发日期还不知道)的一部分,现在也不清楚微软是否会与其他硬件合作伙伴或者相关大数据设备厂商合作。
在国内,阿里巴巴应该是大数据市场的中坚力量,无论是对大数据的获取,运用,还是将大数据真正变为一种商品投放市场,阿里巴巴都是当之无愧的大数据龙头之一。
中培大数据专家钟老师指出,总体而言,目前国内的大多数企业还没有真正从大数据中获利。在数据库、商业智能等领域基础薄弱,IT尤其是软件企业在布局大数据方面,已经远远落后于国外先进企业。对于哪些企业将来有可能成功进入大数据领域,挑起大数据利用国产化的重担,不少人表示看好百度、阿里巴巴、腾讯等国内互联网巨头,因为它们不仅具有资金、技术等方面的实力,而且一直在与数据打交道方面具有先发优势,其本身业务的发展趋势与大数据发展趋势相符。
实际上,作为中国最大的电子商务公司阿里巴巴已经在利用大数据技术提供具体服务,主要内容就是阿里信用贷款与淘宝数据魔方这两部分业务。
以阿里信用贷款为例,阿里巴巴通过掌握的企业交易数据,借助大数据技术自动分析判定是否给予企业贷款,全程不会出现人工干预。据透露,截至目前阿里巴巴已经放贷300多亿元,坏账率约0.3%左右,大大低于商业银行。
淘宝数据魔方则是淘宝平台上的大数据应用方案。通过这一服务,商家可以了解淘宝平台上的行业宏观情况、自己品牌的市场状况、消费者行为情况等,并可以据此作出经营决策。
除了互联网企业以外,也许还有一家不可忽略的企业极有可能在大数据领域异军突起,那就是华为。尽管华为公司在大数据领域一直保持低调状态,但仍有相当一部分中国用户期待华为产品和方案,这主要得益于多年来华为精心打造的“国产IT网络通信产品、方案领导者”的品牌形象。
近年来,尤其是2012年以来,大数据渐渐地开始成为一个人们耳熟能详的术语。有许多人认为2012年应该是大数据元年,更有甚者预测,下一个Facebook会诞生在大数据领域,不管这些看法有没有道理,但至少我们可以看到大数据时代的帷幕已经开启。
想了解更多IT资讯,请访问中培伟业官网:中培伟业