1、减少延迟
在边缘处理信息最直接的好处是,不再需要在云端之间传输数据。因此,可以大大减少数据处理中的延迟。
在之前的预防性维护例子中,支持边缘人工智能的设备将能够立即响应,例如关闭受损的机器。如果我们使用云计算来执行机器学习算法,我们将在数据与云的传输过程中损失至少一秒钟的时间。虽然这听起来可能不重要,但当涉及到操作关键设备时,每一个可以实现的安全边际都是值得追求的!
2、降低带宽需求和成本
在边缘物联网设备之间传输的数据越少,网络带宽的要求也会降低,因此成本也会降低。
以图像分类任务为例。由于依赖云计算,必须将整个图像发送到在线处理。但如果用边缘计算代替,就不再需要发送该数据了。相反,我们可以简单地发送处理后的结果,它通常比原始图像小几个数量级。如果我们将这种效应乘以网络中物联网设备的数量,可能多达数千个或更多。
3、提高数据安全性
减少到外部位置的数据传输也意味着更少的开放连接和更少的网络攻击机会。这使得边缘设备安全运行,避免了潜在的拦截或数据泄露。此外,由于数据不再存储在集中式云中,因此单个违规的后果会大大减轻。
4、提高可靠性
由于边缘人工智能和边缘计算的分布式特性,操作风险也可以分布在整个网络中。从本质上讲,即使集中式云计算机或集群出现故障,各个边缘设备也能够维持其功能,因为计算过程现在独立于云端!这对于关键的物联网应用尤其重要,例如医疗保健。
想要了解更多关于人工智能资讯信息,请关注中培伟业李老师二维码: